ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, 11, 60439

ANL/MCS-TM-190

Load-Balancing Algorithms
for the Parallel Community Climate Model

by

Ian T. Foster and Brian R. Toonen

Mathematics and Computer Science Division

Technical Memorandum No. 190

January 1995

This work was supported by the Atmospheric and Climate Research Division, Office of Energy Re-
search, Office of Health and Environmental Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38.

Contents

Abstract 1
1 Introduction 1
2 PCCM2 2
3 Load Imbalances in PCCM2 3
4 Load-Balancing Algorithms 5
5 Implementation 7
5.1 Definitions and Data Structures, 8
5.2 Data Movement Library 0o 9
6 Empirical Studies 9
6.1 Method e e 9
6.2 Results. e e 11
6.3 Other Issues e e e 12
6.4 Experiments with Optimized PCCM2 13
7 Conclusions 14
A Library Algorithms 15
A.1 Layout Generation Algorithm 15
A.2 Generic Data Movement Algorithm 16
B Using the Library 18
B.1 Schemas e 18
B.2 Layouts e e e 19
B.3 Extended Arrayso 19
B.4 Data Movement Routines, 19
Acknowledgment 20
References 20

iii

Load-Balancing Algorithms
for the Parallel Community Climate Model

Tan T. Foster Brian R. Toonen

Abstract

Implementations of climate models on scalable parallel computer systems can suf-
fer from load imbalances resulting from temporal and spatial variations in the amount
of computation required for physical parameterizations such as solar radiation and
convective adjustment. We have developed specialized techniques for correcting such
imbalances. These techniques are incorporated in a general-purpose, programmable
load-balancing library that allows the mapping of computation to processors to be
specified as a series of maps generated by a programmer-supplied load-balancing mod-
ule. The communication required to move from one map to another is performed
automatically by the library, without programmer intervention. In this paper, we de-
scribe the load-balancing problem and the techniques that we have developed to solve
it. We also describe specific load-balancing algorithms that we have developed for
PCCM2, a scalable parallel implementation of the Community Climate Model, and
present experimental results that demonstrate the effectiveness of these algorithms on
parallel computers. The load-balancing library developed in this work 1s available for
use in other climate models.

1 Introduction

Scalable parallel computer systems use a high-speed interconnection network to connect
hundreds or thousands of powerful microprocessors. Each processor typically has its own
memory, executes independently, and exchanges messages with other processors to syn-
chronize execution or share data. Contemporary examples of this architecture include the
Intel Paragon, Thinking Machines CM5, IBM SP, and CRAY T3D.

Science and engineering applications can often be adapted for execution on scalable
parallel computers by using a technique called domain decomposition [4]. This works
as follows. First, principal program data structures are decomposed into disjoint subdo-
mains of approximately equal size. Then, each subdomain is mapped together with its
associated computation to a different processor. Finally, communication is introduced to
move data between subdomains when this is required for computation. Unfortunately,
the performance of a program developed by using these techniques can be compromised
by poor single-processor performance, by excessive interprocessor communication, or by
load imbalance: a nonuniform mapping of computational load to processors. It is the last
problem that we address in this report.

While load-balancing is an important problem of general interest in parallel comput-
ing, our particular interest is in developing efficient load-balancing algorithms for parallel

climate models. Load imbalances can arise in climate models because the amount of com-
putation to be performed per data item is variable. This variation occurs in the model
routines that perform computations concerned with physical parameterizations such as so-
lar radiation, gravity wave drag, and convective adjustment. This component of the model
is termed “physics” to distinguish it from “dynamics,” which is primarily concerned with
the fluid dynamics of the atmosphere. While load imbalances can also arise in dynamics,
these have a different character and are not considered here.

Computational load imbalance is generally addressed by using one of two methods.
Static load-balancing techniques attempt to determine a static mapping of computation
to processors that minimizes total execution time. While requiring no specialized runtime
mechanisms, this technique does not appear well suited to climate models, in which load
distribution can change significantly during program execution. In contrast, dynamic load-
balancing techniques allow the mapping of computation to processors to change during
program execution. The various mappings can be defined prior to execution and applied
by using a predefined schedule, or can be computed during execution. The techniques
that we have developed support both mapping approaches.

The rest of this report is as follows. Section 2 describes the structure of PCCM?2, the
parallel climate model that we use to evaluate our load-balancing techniques. Sections 3,
4, and 5 describe the principal load imbalances that occur in PCCM2, a set of algorithms
that we have developed to correct these load imbalances, and the structure of the library
developed to implement these algorithms. Finally, Section 6 presents performance results
for the various algorithms, and Section 7 presents our conclusions.

2 PCCM2

While much of the work reported in this paper is independent of any particular climate
model, our implementation work and empirical studies have been performed in the context
of PCCM2, a parallel implementation of the Community Climate Model (CCM2) devel-
oped by the National Center for Atmospheric Research (NCAR) [3]. Hence, we provide a
brief introduction to the structure of this model.

Both dynamics and physics operate on a set of three-dimensional data structures with
size Ngiat X Ngion X Ngyer, Where Ngiar, Ngion, and Ngye, are the number of grid points in the
latitudinal, longitudinal, and vertical direction, respectively. The parallel implementation
uses domain decomposition techniques to decompose these data structures, and associated
computation, in the two horizontal dimensions [3]. Some of these data structures are used
only by dynamics or only by physics; others are shared by the two components. At each
time step, a subset of these data structures is passed between the two components of the
model, which are executed one after the other. Hence, it is most efficient in the absence of
load imbalances to decompose physics data structures in the same way as dynamics data
structures.

The dynamics data structures are decomposed as follows. Processors are divided into
processors responsible for groups of latitudes (Py,;) and processors responsible for groups
of longitudes within a latitude row (P,,). For the purposes of this discussion, we re-
strict Ngiaty Ngion, Plat, and Py, to powers of two. The following restrictions also apply:
Pt < (Nyiar/2) and Proy, < (Ngion/4). The resulting structure is illustrated in Figure 1 [2].
In order to exploit symmetries in the dynamics computations, the latitudes are divided

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 1: Initial Decomposition of a Physical Domain Consisting of 16 x 32 Columns
Mapped onto 16 Processors

into 2 x Py, sections with each section containing Nyi.¢/(2 X Pig¢) latitudes. For any given
latitude processor row J, row J is assigned data sections J and 2 x Pj; — J. Thus, each
row of latitude processors receives Nyjon X Nyigt/(2 X plat) latitudes from the north and
symmetrically the same number of latitudes from the south, resulting in Nyur = Ngiat/ Plat
latitudes of data being assigned to each latitude processor group.

The longitudinal decomposition is a linear partitioning of the data columns. The
Ngioncolumns of data found on each latitude are divided among the P, processors, re-
sulting in Ny = Ngion/ Plon data columns per latitude on any given processor. Since the
partitioning is linear, a longitude processor [is given data columns (I — 1) X Ny + 1
through I X Ny, from each latitude assigned to it.

3 Load Imbalances in PCCM2

In the current release, PCCM2.1, physics load imbalances account for 8.1 percent of total
execution time at T42 resolution on the 512-processor Intel Touchstone Delta computer.
This proportion is expected to increase as other components of the model are optimized.

Three types of physics time step can be distinguished within PCCM?2: partial radiation,
full radiation, and no radiation [1]. Partial radiation time steps occur every hour (which,
in the current implementation, is every third time step). During these time steps, the
shortwave radiation calculations are performed. A full radiation time step additionally
computes the absorptivity and emissivity of longwave radiation. These time steps occur
once every twelve hours (every 36 time steps). The remaining time steps are referred to
as “no-radiation steps,” since no solar radiation computations are performed.

A study of computational load distribution within CCM?2 reveals that the most signif-
icant source of load imbalance is the diurnal cycle [6]. This is due to the computationally
expensive shortwave radiation calculations performed during partial radiation time steps.

Latitude

10

12

14

16
5 10 15 20 25 30

Longitude

0 ! 1 mind MIIHHHHU]W]%]] L1000 11 MHHHHWH

0 100 200 300 400 500 600
Time (msec)

10

Frequency
a1
T

Figure 2: Physics Computation Time for a 16 X 32 Processor Mesh on the Intel Touchstone
DELTA When Using the Same Data Distribution as Dynamics

Because these calculations are performed only for grid columns exposed to solar radiation,
processors containing exposed data columns perform significantly more computation than
processors with few or no exposed data columns. Hence, if PCCM2 physics data struc-
tures are decomposed in the same way as dynamics data structures, we obtain a spatial
imbalance where approximately half the processors remain idle while the others perform
the required radiation calculations (see Figure 2).

The load imbalance introduced by the diurnal cycle is temporal as well as spatial [6].
The earth’s rotation about its axis causes the area impacted by solar radiation to contin-
uously shift westward. In addition, the revolution of the earth around the sun results in
a cyclic annual drift of the solar declination between the summer and winter solstices.

Hence, the latitudes exposed to solar radiation change over time. Furthermore, cycling
between the three types of time steps introduces still another form of load variation.

Other load imbalances encountered in PCCM2 physics include land/sea imbalances,
variations caused by weather patterns (e.g., convection over the Indian subcontinent dur-
ing the monsoon), and the seasonal cycle [5]. While these are not currently viewed as
significant performance problems, future enhancements to PCCM?2 physics may introduce
new forms of load imbalance with these sort of patterns.

4 Load-Balancing Algorithms

The load distribution characteristics of PCCM2 dynamics and physics, and indeed of the
three different types of physics time steps, are so different that it is not feasible to utilize a
single mapping of data and computation to processors. Instead, we require load-balancing
algorithms that change mapping frequently — in fact, on almost every time step. In this
section, we describe such a set of algorithms, each characterized by the mappings that
it employs. The implementation and performance of these algorithms are considered in
subsequent sections.

The library that we have developed to support our load-balancing algorithms provides
a general framework that can be used to implement a wide range of algorithms. The
algorithms that we develop for use in PCCM?2, however, are concerned primarily with the
diurnal cycle. Fortunately, the pairing of symmetric north-south latitudes in the initial
distribution compensates for most of the load variation resulting from the solstitial drift.
However, the continual westward movement of the heavily loaded region, caused by earth’s
rotation about its axis, is not compensated for in the same manner.

Within physics, computation performed within each vertical column is independent
of that performed in other columns. This situation means that vertical columns and
their associated computation can be migrated between processors without any significant
changes to physics. We take advantage of this fact to alter the data distribution used in
physics so that each processor receives an equal number of daytime and nighttime data
columns. Unfortunately, this decomposition cannot easily be used in dynamics. Hence,
data must be returned to the initial decomposition after completion of physics computation
and prior to the invocation of dynamics.

The various load-balancing algorithms that we have developed for PCCM?2 all seek
to compensate for the load imbalance that results from the diurnal cycle, by migrating
columns within individual latitudes (we do not migrate columns within longitudes because
there is little load imbalance in the north/south direction). The algorithms differ in the
frequency and patterns of migration that they employ.

The simplest algorithm that we consider swaps every other data column with the
processor directly opposite itself within its latitude. This column will be located on the
processor that is longitudinally P, /2 processors away. This algorithm causes a contigu-
ous block of columns exposed to daylight to be dispersed to processors that contain few or
no daytime columns, and hence does an excellent job of balancing load. Since each pro-
cessor moves half of its data to another processor, it has the disadvantage of a large amount

of data always being transmitted. On the other hand, the communication pattern is
predictable and hence amenable to optimization.

The other algorithms that we consider seek to balance load by moving a smaller number
of columns. In general, this approach can reduce communication requirements and the
overhead associated with the load-balancing library. With these algorithms, the solar
radiation state of each data column must be determined. For our purposes, the zenith
angle computations found in CCM2’s radinp routine provide sufficient information. Using
the cosine of the zenith angle, we can easily determine the columns exposed to solar
radiation by checking for a value greater than zero.

Given information about which data columns are exposed to solar radiation, a second
swapping algorithm can be considered. This algorithm determines the difference, d, in the
number of daytime columns on a given processor and the processor P, /2 processors to the
west. Then, % daytime columns from the more heavily loaded processor are exchanged for
an equal number of nighttime columns from the opposing processor. This method reduces
the number of data columns being transmitted but requires that a separate mapping be
generated for each radiation time step. These mappings must be either cached or computed
on the fly. While caching is sufficient for the trial runs associated with this study, it is
infeasible for the extended runs common to climate models.

Slightly more complex is the algorithm that moves data columns rather than simply
swapping them. To accomplish this, we must estimate computation costs associated with
a column. We determine the computation costs as follows. First, we determine the ratio of
the computation times required for daytime and nighttime columns. We refer to this ratio
as the daypoint-nightpoint ratio, %. This ratio is computed in a calibration step, prior
to running the model. Using this information and the exposure information discussed
previously, we can determine the cost of computation associated with the data columns
on a every latitude and processor. The cost for any given latitude and processor is simply
% X Nday+1 X Npighe, where Ny, is the number of columns exposed to daylight and N,
is the number of columns in complete darkness.

In addition to estimating computation costs, the movement algorithm necessitates the
extension of the data arrays used within physics so as to provide room for more than Ny,
columns per latitude. Because the rest of PCCM2 assumes Ny, columns per latitude,
and cannot easily be modified, it becomes necessary to copy data arrays from dynamics
arrays to new “extended arrays” prior to calling physics. This step represents additional
overhead not found in either of the swapping algorithms.

The movement algorithm attempts to move columns between a given processor and the
processor offset 180 degrees in longitude, because this strategy was found to compensate
well for the diurnal cycle imbalance. In this algorithm, daytime columns are moved from
the more heavily loaded processor until the cost difference between the two processors
is minimized. Then, the same technique is used for nighttime points, thus providing a
fine-grain adjustment. Since physics requires the data columns on each processor to be
contiguous, data columns may need to move locally. To minimize this local movement,
we choose the data columns to be transported to opposing processors from right to left in
the data arrays.

For comparison purposes, we also included a version of the well-known recursive bisec-
tion algorithm in this study. The bisection algorithm, like the movement algorithm,
linebreak

uses the daypoint-nightpoint ratio and the zenith angle to determine the cost associated
with each column. The data columns within a latitude are recursively divided into two
groups with approximately equal costs. The recursion continues until each processor has
been assigned a contiguous set of columns.

Since all four algorithms are designed to deal with the diurnal cycle, they are applied
only during radiation time steps: that is, once every hour. During non-radiation time steps,
physics data structures remain in their initial decomposition. Hence, the first swapping
algorithm alternates between two mappings: the initial mapping and a swapped mapping.
For the purposes of this study, the other algorithms use a different mapping for each
radiation time step.

5 Implementation

The load-balancing algorithms described in the preceding section are implemented by a
general-purpose, configurable data movement library. This library allows the programmer
developing load-balancing algorithms to specify simply the mapping of data columns to
processors that is to apply within physics at each time step; the library then takes care of
organizing the movement of data required to support this mapping.

Data movement is required for two purposes. At every time step, data structures
shared by physics and dynamics must be reorganized from the physics mapping to the
dynamics mapping prior to calling dynamics, and then back to the physics mapping prior
to calling physics. In addition, data structures used only with physics must be reorganized
whenever the physics mapping changes.

Obviously, we wish to minimize the amount of data communicated by the data move-
ment library. Hence, we distinguish between the following four categories of physics data
structures. Each has its own set of data movement requirements.

Input: These variables are shared by physics and dynamics. They are used to pass values
from dynamics to physics, but not from physics to dynamics. Hence, they must be
reorganized before calling physics, but not after.

Output: These variables are shared by physics and dynamics. They are used to pass
values from physics to dynamics, but not from dynamics to physics. Hence, they
must be reorganized after calling physics, but not before.

Input/Output: These variables are shared by physics and dynamics. They are used to
pass values both from physics to dynamics and from dynamics to physics. Hence,
they must be reorganized both before and after calling physics.

State: These variables are only used within physics. Within PCCM2, these are variables
whose values are set at the beginning of the model and then remain constant or
change only rarely during execution. These variables are most often found in com-
mon blocks, although they may be occasionally stored in temporary files or in-core
storage. It is necessary to reorganize these variables only when the physics mapping
changes.

5.1 Definitions and Data Structures

A load-balancing algorithm is represented to the data movement library as a set of schemas
and a schedule. In this section, we define these terms and provide additional information
on the techniques used to implement load-balancing algorithms.

As PCCM2 performs computation one latitude at a time, the load-balancing library
transfers data columns to processors only within the same latitude processor group. In
other words, a column may be transferred from Py to Py only if | Pi/Pion| = [P2/ Pron]-
Furthermore, the data column must be assigned to the same latitude on the new and
original processors. Although these restrictions limit load-balancing to a single dimension,
it would not be difficult to remove these restrictions should load-balancing in the second
dimension be required.

Schema: A schema defines a valid mapping of physics columns to processors. A mapping
is represented as an Ngj,¢ X Nyiopn integer array in which the (7, j)-th entry identifies the
processor on which the (7, j)-th physics columns is to be located. The constraints placed
on a schema are that (a) the number of data columns assigned to any one processor in
each latitude is no more than the constant Nyon., where Nyone > Nyon is the maximum
number of data columns per latitude that any processor has space allocated for, and (b)
a column not be assigned to a processor not existing in its latitude processor group. A
special schema, the identity schema, is defined as a mapping that assigns all columns to
their initial (or home) processor. The following is an example of an identity schema for a
4 x 8 grid, mapped to 4 processors in a 2 X 2 configuration.

Q| ||] =
Q| ||] =
w |] rof v
w |] rof v
w |] rof v
w |] rof v

111
111
313
313

The following schema allocates ten columns to processor 1, six to processor 2, eleven to
processor 3, and five to processor 4.

=Wl N N
W W[DN —

NI

NN | YR

1
1
3
3

1
1
3
3

111
111
313
313

The following schema is not valid because it attempts to send a column from processor
1 to processor 3, thereby violating the restriction that the receiving processor be in the
same latitude processor group as the sender.

| W —| W
IS N R)
=N
=Wl DN N
| W DN =

1(1]1
1(1]1
3133
3133

Table 1: Daypoint-Nightpoint Ratios

Processors Daypoint-Nightpoint Ratio

Lat. | Long. | Full Radiation | Partial Radiation
4 8 1.19 4.20
8 8 1.18 4.13
8 16 1.15 3.62
16 16 1.15 3.63
16 32 1.11 3.21

Schema Set: A schema setis a collection of schemas from which a single schema may be
selected to define the current data mapping. Every schema set must contain the identity
schema as the first member of the set.

Schedule: A schedule specifies which schema in the schema set is to be applied at each
time step.

5.2 Data Movement Library

The load-balancing system uses three data movement routines to reorganize data when
switching from one schema to another. These routines, all based on a generic movement
algorithm, are summarized below; they and the generic movement algorithm are described
in detail in Appendix A.2.

State Reorganization: By definition, state data do not change (or at most very rarely)
and hence need by moved only when the schedule calls for a schema change. The
state reorganization algorithm controls the movement of state data, ensuring that
transmission is minimized.

Input Exchange: The input exchange routine is responsible for transporting variables
that are classified as both input and input/output. This routine also determines the
number of data columns currently assigned to the processor.

Output Exchange: The output exchange algorithm is responsible for transporting vari-
ables that are classified as both input/output and output.

6 Empirical Studies

6.1 Method

The performance of the four algorithms discussed in Section 4 was measured by us-
ing an instrumented version of PCCM2. This instrumented version is based on an early
release of PCCM2 in which the dynamics algorithms are not optimized. This reduces
the proportion of total time taken in physics and hence the apparent impact of the load-
balancing algorithms, but does not invalidate the comparison of the algorithms. In Section

Table 2: PCCM2 Performance Results for a 16 x 32 Mesh on the Intel Touchstone DELTA

Time (msec) Relative
Section | Algorithm | Full | Partial | None | Average | Speedup

Overall | bisection 3589.0 | 1179.5 | 858.6 1032.5 1.010
movement | 3592.0 | 1103.5 | 847.3 1001.8 1.041
swapping | 3489.0 | 1111.6 | 846.7 1001.0 1.042
swapping2 | 3473.0 | 1102.8 | 848.2 998.9 1.044
original 3740.0 | 1276.5 | 823.9 1043.2
Physics | bisection 2829.0 346.5 | 63.7 226.9 1.185
movement | 2826.0 294.1 | 63.8 210.9 1.275
swapping | 2702.0 306.4 | 62.9 210.6 1.276
swapping2 | 2700.0 296.5 | 63.0 207.6 1.295
original 2998.0 504.5 | 47.0 268.8

6.4, we present the performance results when the first swapping algorithm is incorpo-
rated into a more optimized PCCM2.

Several forty time step runs were performed on the Intel Touchstone DELTA at T42
resolution (64 x 128 grid of data columns) with the number of processors varying between
32 and 512. All of the algorithms used were specified by schema sets and schedules loaded
from files. We chose to limit the runs to forty time steps since that number encompassed
all types of time steps while minimizing the number of layouts that had to be buffered in
memory. Although this approach allowed us to explore the diurnal cycle, we were unable
to observe the effects of the seasonal cycle.

Since the movement and recursive bisection algorithms require a daypoint-nightpoint
ratio, we performed several runs with different processor counts. During these runs, the
time requirements for a varying number of daytime points were measured. From this in-
formation, we were able to compute the daypoint-nightpoint ratio for each of the processor
counts (see Table 1).

Once the preliminary work was complete, schema sets along with schedules were gen-
erated and stored. Then, two separate sets of performance runs were performed. The
first sets of runs measured the overall performance of the model. The second set gathered
information about the overhead of the load-balancing system. The runs were separated to
avoid probe effects from affecting overall performance measurements. A disadvantage of
this approach is that the total times and measured overheads do not always add up.

Although the load-balancing system has introduced additional overhead to each time
step, we find that it succeeds in reducing the load imbalance caused by the solar radia-
tion calculations. As can be seen in Figure 3 and more vividly in Figure 4, the overall
performance of the model has been improved by more than 4 percent when using the
swapping algorithms on all 512 processors of the Intel Touchstone DELTA. This improve-
ment in performance is a direct result of the near-elimination of the load imbalance within
physics.

Tables 2 and 3 contain the actual execution and overhead times measured on 512
processors of the Intel Touchstone DELTA. The tables give average times over all time
steps for each type of time step: full radiation, partial radiation, and non-radiation. They

10

Table 3: Load-Balancing Overhead for a 16 x 32 Mesh on the Intel Touchstone DELTA

Time (msec)
Section | Algorithm | Full | Partial | Nomne | Average
Input bisection 9.0 38.3 2.2 134
movement | 4.0 19.0 2.5 7.6
swapping | 20.0 19.4 2.2 8.0
swapping2 | 18.0 19.4 2.2 7.9
Output | bisection 8.0 44.2 2.0 15.1
movement 3.0 19.7 2.0 7.5
swapping | 20.0 20.0 2.0 8.0
swapping2 | 19.0 19.6 2.0 7.9
State bisection 10.0 55.0 | 30.4 374
movement | 4.0 29.3 | 13.2 17.8
swapping | 26.0 27.1 | 14.5 18.6
swapping2 | 26.0 26.5 | 13.9 18.1
Extend | bisection 8.0 8.5 8.4 8.4
movement 8.0 8.9 8.4 8.5
swapping 0.0 0.0 0.0 0.0
swapping2 | 0.0 0.0 0.0 0.0
Total bisection 35.0 146.0 | 43.0 74.3
movement | 19.0 76.9 | 26.1 41.4
swapping | 66.0 66.5 | 18.7 34.6
swapping2 | 63.0 65.5 | 18.1 33.9

also give the average time for all time steps. It should be noted that the latter value is
not simply the average of the other three columns but is a weighted average, where the
weights are based on the number of time steps executed for each type within a 24-hour
period.

The overhead data in Table 3 breaks down load-balancing costs into four categories.
The first three correspond to the input exchange, output exchange, and state reorgani-
zation operations described in Section 5.2, while the fourth is the copying required when
moving data from the dynamics arrays to the extended arrays used in physics in the non-
swapping algorithms. Note that the swapping algorithms do not incur “Extend” costs.

6.2 Results

It is clear from Figure 4 that the second swapping algorithm was the most effective on the
Intel Touchstone DELTA. With this algorithm, the imbalance caused by the diurnal cycle
is reduced from 6.8 percent to 0.8 percent. Clearly, this swapping algorithm succeeds in
eliminating almost all of the imbalance. This result is apparent when Figures 2 and 5
are compared. Physics execution time on 512 processors, excluding the overhead of the
load-balancing system, is reduced by 22.8 percent. The overall execution time for an
average time step is decreased by 4.3 percent, despite the 3.3 percent of additional overhead
introduced by the load-balancing system. Similar figures are also seen with the first

11

bisection ——

5000 1 movement -+]
: swapping -

4000 swapping2 >
original -&--

3000

2000

Time (Msec)

1000

32 64 128 256 512
Processors

Figure 3: Overall Performance on the Intel Touchstone DELTA

swapping algorithm.

For comparative purposes, Figure 6 shows the load distribution obtained with the re-
cursive bisection algorithm, which improved overall performance by only 1.0 percent. The
reason for this algorithm’s poor performance is clear: it performs much more commu-
nication than the other algorithms and, in consequence, incurs significantly higher load-
balancing overheads. Additionally, the large spatial imbalance resulting from the diurnal
cycle is not easily removed without reordering the columns within a latitude. Not having
the ability to intersperse nighttime columns among the daytime columns, this algorithm
fails to make the fine-grain adjustments necessary to balance the radiation calculations.

In theory, one would expect the movement algorithm to outperform the swapping al-
gorithms; however, the empirical data show it to be less effective than expected. Although
this algorithm communicates less data than either of the swapping algorithms, it has the
additional overhead of extending the physics arrays. It also proves to be slightly less effec-
tive in balancing load. This is because it expects the computational costs associated with
a daytime or nighttime column are constant. However, physics contains other imbalances
besides the diurnal cycle. Although smaller in magnitude, these imbalances do have an
impact, which is compensated for by swapping but not by movement.

6.3 Other Issues

The algorithms used in this study switch to an identity mapping during non-radiation
time steps. Hence, physics state data are reorganized both before and after each radiation

12

bisection ——
movement -+--
098 swapping -~
swapping2 <
original -&--
0.96 N
[}
£
|_
< 0.94 .
®
T
04
0.92 P .
E N _’/,_ct
09 - M"T'*-;é;"/ 1
088 1 1 1 1
32 64 128 256 512
Processors

Figure 4: Relative Overall Performance on the Intel Touchstone DELTA

time step. In principle, these data could be cached on each processor in the swapping
algorithm, avoiding the need for the reorganization. As can be seen by examining the
partial radiation times in Table 3, however, the time required to reorganize the state data
is less than the time required to exchange the input and output data on every time step.
Hence, this situation is not expected to have a significant impact on performance.

Extended arrays are a source of overhead in the PCCM2 implementation of the data
movement algorithms, as data must be copied to and from the extended arrays at each
time step. This overhead could be avoided in a climate model that used extended arrays
throughout both physics and dynamics. Qur results suggest, however, that the swapping
algorithm would still outperform the data movement algorithms.

While it would be possible to devise a new movement algorithm that was aware of
the other imbalances that result in inefficiencies in the current movement algorithm, the
additional overhead associated with this awareness would likely cancel any improvements.
Additionally, for extended runs, the mappings must be generated at run time rather
than precomputed and cached. Both the second swapping algorithm and the movement
algorithm incur an additional overhead because a new mapping must be computed for
each radiation time step. The first swapping algorithm uses only two fixed schemas and
thus avoids this additional overhead.

13

)
S 8
=
®
4

5 10 15 20 25 30
Longitude
> 10 T T T T T
(&)
S
S 5) ‘ -
g 5 ‘\ |
T b fi
L 0 1 1[0 10 TR | 1 1
0 100 200 300 400 500 600
Time (msec)

Figure 5: Physics Computation Time after Load-Balancing with the Swapping 2 Algorithm

6.4 Experiments with Optimized PCCM?2

Further enhancements were made to PCCM?2 independent of the version used for devel-
opment of the load-balancing libraries. Many modifications were made in the dynamics
portion of the code, but physics remained relatively untouched. The modifications made
to the newer version of the code have resulted in a substantial performance improvement
within dynamics and thus have made the physics imbalances more significant to the overall
execution time. Trial runs using the first swapping algorithm indicate an overall improve-
ment of 5.9 percent when the load-balancing code is added to the current version of the

model.

7 Conclusions

The results of this work are encouraging. The swapping algorithms succeeded in signif-
icantly reducing the load imbalance, improving the total execution time by 5.8 percent.
The overhead associated with the load-balancing code, however, is still rather high. In
future work, we will investigate techniques for reducing the overhead. Caching state data
is one possible approach. Another is to perform load balancing only on radiation physics.
While less general, this requires moving far less data. In addition, the incorporation of

14

Latitude

5 10 15 20 25 30

Longitude

>\l() T T T T T

(&)

£

5| iy 1k _

L 0 | (AT VRGO HHH‘\H (CRRANTA {7 (O ANaD 0 | |

0 100 200 300 400 500 600

Time (msec)

Figure 6: Physics Computation Time after Load-Balancing with the Bisection Algorithm)

a transposed-based FFT into PCCM2 appears to make it possible to integrate input and
output data movement into the transpose operation used to move from latitude/vertical

decomposition to latitude/longitude decomposition.

A Library Algorithms

We describe two algorithms used within the data movement library. The first generates
a layout from a schema, and the second determines the communication required to move

from one layout to another.

A.1 Layout Generation Algorithm

The layout generation algorithm generates a unique layout from a valid schema. Subse-
quent algorithms use layouts to determine data movement requirements.

A layout is a Nyt X Nyiop array of (processor, latitude, index) triples that define the
exact mapping of each physics data column to a processor and data space. A column
is said to be on-processor if the mapping places it on the same processor as specified by
the identity schema. A column that is not on-processor is referred to as an off-processor

15

column. A valid layout does not include any discontinuities or “holes” in the data space
mappings. In other words, the data columns must be packed to the left in each latitude
on each processor. Finally, on-processor columns must remain in their initial or “home”
location whenever possible.

The algorithm operates as follows:

1. Scan the entire schema, and count the number of local (on-processor), L, and foreign
(off-processor), F', columns for each latitude on that processor. If on any latitude
L+ F > Njone, then signal an error.

2. Scan each latitude of the processor’s component of the schema, left to right, and place
on-processor columns in their “home” location. If more than F discontinuities exist
in the layout for the given processor and latitude, then the rightmost on-processor
columns should be moved to fill these excess “holes.”

3. Scan each latitude of the schema, left to right, and place each foreign column en-
countered in the layout, selecting first areas of discontinuity and then free locations
as the destination.

It should be noted that although the algorithm attempts to place each on-processor
column at the same location as the corresponding dynamics column, success is not guar-
anteed. Consider the following schema:

=Wl DN DN
W W[DN —

e I

N YY)

W W —|+—

W W —|+—

111
111
313
313

Execution of algorithm schema to_layout generates the following layout for this schema:

11112113114 [21.1 [1,15]21,2]1,1.6
121121123124 (221 [222]223]224
311312313314 41,1]412][3.15]3,.6
321322323324 421422423325

A.2 Generic Data Movement Algorithm

The generic data movement algorithm determines the communication required to move
from layout Ly to layout Ls. In order to minimize communication costs on computers
with high message startup costs, it packs all data to be sent to a given processor into a
single message.

1. PostReceives: determine which columns will be sent to the current processor from
other processors, and inform the message-passing system of expected messages.

(a) Create a receive list identifying the columns that will be sent by other proces-
SOTS.

i. Initialize the receive list and a temporary transfer list to an empty state.

16

ii. Foreach Ly(¢,7) = (m,k,p) with m = P, where P is the current processor:
A. Find L1(4,7) = (n,l,0).
B. If m # n, add (¢,7) to the transfer list.

iii. Sort the transfer list by n, the processor to be transmitted to.

iv. For each processor P:

A. Scan the transfer list, counting the number of items transmitted, ¢, for
processor P.
B. If t > 0, add (P, t) to the receive list.

v. Save the receive list for later use by ReceiveColumns.
(b) For each entry (P,t) in the receive list:
i. Allocate a message buffer containing enough space for ¢ data columns and
addresses.

ii. Inform the message—passing system as to each buffer’s location.

2. SendColumns: determine which currently on-processor columns are to be sent to
other processors, compose a message containing those columns, and then send the
messages.

(a) Create a transfer list that contains the columns present on this processor that
need to be sent to other processors.

i. Initialize the transfer list to an empty state
ii. For each entry Li(i,7) = (n,l,0) with n = P, where P is the current
processor:
A. Find Ly(i,7) = (m, k, p).
B. If m # n, then add (¢,7) to the list of columns to transmit.
iii. Sort the transfer list by m, the processor to be transmitted to.
(b) Using the transfer list, compose and send a message for each processor to which

one more columns must be sent. Each message should contain the data of the
local columns to be sent and their corresponding (&, p) addresses.

3. LocalReorganization: move columns that are remaining on-processor but need to
change location in the data storage arrays. This can be accomplished invoking the
following algorithm for every entry Li(7,j) = (n,l,0) with n = P where P is the
current processor:

(a) Find Ly(i,7) = (m, k,p).
(b) If m = n, move the data for column (7, j) from (/,0) in the data array space to

(k,p). (Note: given the current restrictions, { = k will always be true)

4. ReceiveColumns: complete the receive process by waiting for messages to arrive
and placing the data contained within the messages into the appropriate data storage
arrays. The following algorithm should be executed for each (P, t) item in the receive
list saved in PostReceives:

17

(a) Query the message-passing system for the arrival of a message from processor
P waiting until one arrives.

(b) For each of the ¢ columns of data in the preassigned message buffer:

i. Extract the data and the (k,p) address for that column.

ii. Place data into the data arrays at location (k, p).

In the context of PCCM2, the generic movement algorithm is used by the following
algorithms.

State Reorganization: This algorithm is a modified version of the generic movement
algorithm that maintains I, internally as the last layout used. This algorithm exits
immediately unless Ly # Lo.

Input Exchange: This algorithm uses the generic movement algorithm with Ly always
set to the identity schema. It also returns the number of columns assigned to a
processor.

Output Exchange: This algorithm is a specific instantiation of the generic movement
algorithm that sets Ly to always be the identity schema.

B Using the Library

A library of data transport routines has been implemented and integrated into PCCM?2.
This library is responsible for taking data mappings from the load-balancing system and
performing the necessary data transfers to obtain those mappings. In PCCM2, the library
is initialized within the load-balancing startup code, lbsetup, which is called from the
main PCCM2 routine, ccm2. The use of the load-balancing system by PCCM2 can be
controlled using the C preprocessor macro PP_LOAD BALANCE. When PP_LOAD BALANCE is
set to one, the load-balancing system is enabled; any other value results in its being

disabled.

B.1 Schemas

In the current implementation of the load-balancing algorithms, schemas can be either
loaded from a schema set file during program initialization or generated by user-supplied
code during model execution. The method used is determined at compile time by the C
preprocessor macro LB_.SCHEMA_GEN. If this is defined, then the system expects that some
form of code exists that will supply the schemas to the load-balancing system; otherwise,
the load-balancing code will expect to find the schemas defined in a schema set file.

If the file method is used, the load-balancing initialization code calls layout_set. The
layout_set routine repeatedly calls the routines schema read and layout_generate in
order to generate a set of layouts from the set of schemas found in the file schema.set. The
schema.set file is read by schema read, which processes the text file by reading integer val-
ues until it has obtained Ngjqr X Nyiopn, values. It returns these values in a two-dimensional
array. The next time the routine is called, it reads the next schema in the file and returns
it providing one is found. Upon reaching end of file, schema read will return a status of
false causing layout_set to terminate. The schema.set file may be organized in any way

18

that proves to be visually pleasing to the user as long as the first schema defined is an
identity schema and there are exactly n X Ny X Ngiopn integer elements present in the file
where n is a positive integer.

If LB_.SCHEMA _GEN is defined, then the load-balancing code expects that a routine exter-
nal to the load-balancing system will be generating schemas. The schema generation rou-
tine then uses layout_replace to create a layout from the schema and register the layout
with the load-balancing system. Like layout_set, layout_replace uses layout_generate
to generate a corresponding layout from the supplied schema. As with the schema file
method, an identity schema must be registered as the first schema.

B.2 Layouts

As stated earlier, schemas may be supplied to the load-balancing system by two different
mechanisms: schema files or runtime generation. In either case, the schemas are converted
to layouts by layout_generate. The information generated by the layout_generate
routine is used by the data movement routines.

The layouts currently registered with the load-balancing system are stored in the vari-
able Layouts defined in layout.com. The Layouts variable is a four-dimensional array
with dimensions of global latitude, global longitude, information type, and layout number.
Given one of the following values for the information type dimension, all of the necessary
information can be obtained about a given layout.

LAYOUT_PROC: processor to which the data element is to be moved
LAYOUT_ROW: the local latitude on which the data element is to be placed

LAYOUT_COLUMN: the local longitude or column on which the data element is to
be placed

B.3 Extended Arrays

Because some nonidentity schemas cause some processors to acquire additional physics
data columns, it was necessary to extend the length of data arrays to accommodate the
additional data. Although separate arrays could be allocated for the additional data, this
approach would result in unnecessarily complex modifications to the physics code as well
as poorer performance. The lengthening was achieved by (a) changing the dimension of
the various physics data arrays from p_lond to a larger value p_londx (N), and (b)
changing loops over these arrays to range from 1 to mnlonx. The changes were required
in all subroutines contained within the phys call tree. The existence of the extended
array additions with PCCM?2 are controlled by the definition of the C preprocessor macro
PHYS EXTEND_ARRAYS.

B.4 Data Movement Routines

The data elements in the PCCM2 computational grid are reorganized by using three rou-
tines: state_reorg, input_exchange, and output_exchange. The state_reorg routine
is responsible for reorganizing the state information whenever the schedule dictates that
a new schema is to be used. The input_exchange and output_exchange are responsible
for reorganizing input and output information, respectively. They also share the task of

19

Table B-1: Reorganization subroutines

Post Send Local Receive
State state post_recv state_send statelocal state_receive
Input input_post_recv input_send input_local input_receive
Output | output_post_recv | output_send | output_local | output.receive

reorganizing input/output information. The input_exchange routine is called prior to the
phys routine, while output_exchange is called after phys.

Each of the three data movement routines is broken down into four subroutines: post
for receive, send data elements, local reorganization, and receive data elements. Table
B-1 contains the routine names of these subroutines as they correspond to the three
data movement types. The posting routines call get_transfer list to obtain a list of
expect data columns, compose a receive list from the transfer list, store the receive list
in Recv_List, allocate sufficient memory from a buffer to receive the data, and tell the
message-passing system what messages are expected and where in the buffer to place
them when they arrive. The send routines call get_transfer list to obtain a list of
points to be sent and then, prior to sending, pack the data columns together so that only
one message is sent to any given processor. The local reorganization routines move data
columns that are local to a given processor but are no longer in the correct location in
the data arrays. The receive routines, using the information stored in Recv_List, wait
until expected messages have arrived and then unpack the messages, placing them in the
specified locations within the data arrays.

Acknowledgment

Access to the Intel Touchstone DELTA was provided by the Concurrent Supercomputing
Consortium.

References

[1] Bath, L., Olson, J., and Rosinski, J. User’s Guide to NCAR CCM2. National Center
for Atmospheric Research, Boulder, Colorado. 1992.

[2] Drake, J., Walker, D., and Worley, P. Parallelizing the Spectral Transform Method —
Part II, ORNL/TM-11855. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
1991.

[3] Drake, J., Foster, 1., Hack, J., Michalakes, J., Semeraro, B., Toonen, B., Williamson,
D., and Worley, P. PCCM2: A GCM Adapted for Scalable Parallel Computers. Proc.
AMS Annual Meeting, AMS. 1994.

[4] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and Walker D. Solving
Problems on Concurrent Processors. Prentice-Hall. 1988.

20

[5] Michalakes, J. Analysis of Workload and Load Balancing Issues in the NCAR Com-

munity Climate Model, ANL/MCS-TM-144. Argonne National Laboratory, Argonne,
Illinois, 1991.

[6] Michalakes, J., and Stevens, R. Analysis of Computational Load Distribution in the
NCAR Community Climate Model. Computer Hardware, Advanced Mathematics and
Model Physics Pilot Project Final Report, DOE/ER-0541T, pages 19-24. U.S. De-
partment of Energy. 1992.

21

